
Combinatorial Test Architecture Design Using Viewpoint diagram

Yasuharu Nishi
The University of Electro-
Communications, Tokyo

Tokyo, Japan
Yasuharu.Nishi@uec.ac.jp

Tetsuro Katayama
Faculty of Engineering,
University of Miyazaki

Miyazaki, Japan
kat@cs.miyazaki-u.ac.jp

Satomi Yoshizawa
NEC Corporation

Tokyo, Japan
satomi@cj.jp.nec.com

Abstract— Software test has recently been a large-scale and
complicated artifact, as is the software itself. It is necessary to
reduce huge combinatorial test cases. This paper focuses on
reduction of test parameters and combinations in test
architectural design. First we will mention the test architecture
design phase in TDLC: Test Development Life Cycle. Second
we will introduce NGT: Notation for Generic Testing, which is
a set of concepts or notation for design of software test
architecture. This paper shows four examples of test
architecture design patterns: Interaction-Viewpoint
Conversion pattern, Interaction Cluster Partitioning Pattern,
Interaction Demotion Pattern and Interaction Necessity
Analysis.

Keywords- test architecture; test development life cycle; test
viewpoint; combinatorial test; test design pattern; NGT;

I. INTRODUCTION

Software test has recently been a large-scale and
complicated artifact, as is the software itself. There can be a
test project with over one million test cases and over ten test
levels including hundreds of test combinations. Technologies
of large-scale and complicated software testing have just
begun to advance and must be boosted.

For large-scale and complicated software testing it is
necessary to reduce huge combinatorial test cases. It consists
of three strategies:

1) Test cases reduction
Exhaustive test cases can be reduced by various

combinatorial test techniques such as orthogonal array
techniques and pairwise testing techniques. In this strategy
test design focuses mainly on mathematical modeling of
algorithms and constraints for fixed numbers of values in
fixed numbers of parameters and combinations.

2) Test values reduction
Combinatorial test cases can be reduced by decreasing

values such as equivalence partitioning. In this strategy test
design focuses mainly on modeling of each parameter space
for unfixed numbers of values in fixed numbers of
parameters and combinations.

3) Test parameters and combinations reduction
Combinatorial test cases can be reduced by decreasing

parameters and combinations. In this strategy test design
focuses mainly on modeling of parameters and combinations
directly for unfixed numbers of values in unfixed numbers of
parameters and combinations.

These three strategies are all essential and can be applied
simultaneously. Research based on the third strategy,
however, is not active at present. This paper discusses
modeling of parameters and combinations directly for
combinatorial test design as test architecture design.

II. TEST DEVELOPMENT LIFE CYCLE

A. Test System Architecture and Test Suite Architecture

"Software architecture" technology arose in the 1990s for
development of large-scale and complicated software based
on abstraction, separation of concerns, modeling, patterns
and so on. "Software test architecture" technology is arising
in our age, and we have to boost research and practices on
software test architecture technologies more and more.

Architecture of software system has two kinds of scope:
system architecture and software architecture. System
architecture is for software, platform, peripherals, network et
al. Software architecture is only for the inside of software,
which mainly consists of modules (groups of statements)
such as classes. Test architecture also has two kinds of
scopes: test system architecture and test suite architecture.
Test system architecture is for test system/software to be
tested (SUT), platform where SUT is executed, generator of
test cases et al. Test suite architecture is for the inside of test
suites, which mainly consist of groups of test cases such as
parameters of combinatorial tests, test conditions, test levels
and test types.

There are several research and practices on test system
architecture. UTP: UML Test Profile[1] is standardized as a
notation based on UML for test system architecture. But
currently research and practices of test suite architecture are
just experiences and heuristics. In this paper hereinafter the
word "test architecture" means test suite architecture. Fig.1
shows an example of test system architecture according to
UTP. Fig.2 shows an example of test suite architecture
according to NGT, Notation of Generic Testing[2]
introduced in chapter III.

NGT can complement UTP because research and
application of UTP mainly focus on test system architecture
such as automation at present and NGT focuses on test suite
architecture. NGT should harmonize UTP in future research.

B. Test Planning and Test Architecture Design

Test process is recognized roughly by tradition as below:
Test planning, test design and test execution. Traditional test
design means a phase to derive test cases by test techniques

such as control path testing. Traditional test planning means
a phase which includes planning a test project and drawing a
big picture of test cases, that is, which includes both tasks of
the management side and the engineering side.

Figure 1. A Test system architecture example on UTP[1]

Figure 2. A Test suite architecture example on viewpoint diagram of NGT

A project planning phase in software development

includes only tasks of the management side, while a software
architecture design phase fills a role of drawing a big picture
of software, that is, just the engineering side. A lot of
companies separate positions of project manager and
software architect. In software testing, however, tasks of
both sides are traditionally mixed as test planning, test
strategy or test approach, because software testing is a tight
task for budget and effort constraint. A lot of companies
have only a position of "test manager" for both sides while
very few companies have a position of "test architect".

To boost research and practices on software test
architecture technologies, we have to distinguish the
management side and the engineering side. It is necessary to
re-define test processes only from the engineering side
named TDLC, Test Development Life Cycle. Fig. 3 shows
TDLC, which consists of four phases: test requirement
analysis, test architecture design, test detail design and test

implementation. TDLC is intended just to develop test cases
or test scripts. Whole test processes need a test execution
phase, a test result recording phase and several test
management tasks.

Test
architecture

design

Test
detail
design

Test
requirement

analysis

Test
imple-

mentation

…

…

Test design
[engineering side]

Test planning
[management side]

Traditional mixed-side test process

TDLC (Test Development Life Cycle)

Figure 3. TDLC (Test Development Life Cycle)

C. Test Architecture Design for combinatorial test design

Combinatorial test design generally consists of three
phases: 1) selecting parameters and combinations, 2)
modeling parameter space and 3) determining and applying a
combinatorial test technique such as orthogonal array
techniques and pairwise testing techniques. The selecting
parameters and combinations phase is operated with
heuristics, experiences and engineering sense. We categorize
the selecting parameters and combinations phase into test
architecture design and the other two phases into test detail
design.

III. TEST ARCHITECTURE DESIGN

A. Concepts for Test Architecture

As there is still no agreement on the exact definition of
the term "software architecture", it is impossible to exactly
define the term “test architecture” for the present. For
example IEEE std. 1471[3] defines "architecture" as "The
fundamental organization of a system embodied in its
components, their relationships to each other, and to the
environment, and the principles guiding its design and
evolution". To follow IEEE's definition, we have to clarify
components and their relationships for software test
architecture as well as program statements for software
testing.

It is natural for program statements to correspond to test
cases or test scripts. This correspondence leads components
to be group of test cases such as parameters of combinatorial
test, test conditions, test levels and test types, which are
essentially hierarchical. It should be noted that classes, which
are components in OO paradigm, have two angles. The first
is the group of statements (and data) as an extension of
structured programming as a way of OOP. The other is
constituent of the world as a way of OOA. Test types or test
levels may be from the former angle. We should deeply
discuss which angle is suitable for test architecture following
test requirement analysis and how seamless test requirement
analysis models and test architecture models should be.

Relationships are more difficult than statements and
components. There are at least two types of relationships.
The first is for combinatorial testing. If versions of the OS

should be tested combinatorially with versions of Internet
Explorer, they have a combinatorial type of relationship. If a
load test type should be tested combinatorially with a
configuration test type, they also have the combinatorial type
of relationship. Another is a sequential type of dependency.
As an integration test level should be tested after a unit test
level, they have the sequential type of relationship. Other
types of relationships than combinatorial and sequential
types can be defined if necessary.

In addition, some principles for software design can be
applicable such as abstraction, separation of concerns and
modularity. Quality characteristics of test suites can indicate
and assist good test design such as maintainability of test
suites. Notation or formulation can make it easy for
engineers to store reusable test assets such as test design
patterns and test architecture styles.

B. NGT: Notation for Test Architecture Design

For design of test architecture, notation or a set of
concepts is necessary. It should consist of concepts of a
group of test cases, hierarchical structure, relationships for
combinatorial testing and relationships for sequential
dependency. It would be better if it could harmonize the
principles, abstraction, separation of concerns, modularity
and quality characteristics.

Fig. 4 shows notation or a set of concepts is named NGT,
Notation for Generic Testing[2]. NGT consists of three
concepts which are viewpoints, hierarchical relationships and
interactive relationships. Viewpoints are a concept of a group
of test cases. Hierarchical relationships are used for
hierarchical structure of viewpoints. Hierarchical
relationships mean abstraction (is-a), composition (has-a),
cause-effect and object-attribute. Interactive relationships
mean necessity for combinatorial testing or are used for
sequence of viewpoints. Stereotypes are used for definition
of types of viewpoints and relationships. Is-a, has-a, cause-
effect, object-attribute, combination and sequence are
reperesented as stereotypes.

Figure 4. Example of viewpoint diagram and test cases

In Fig.4 the box represents a viewpoint. The directional
line with a closed arrowhead represents a hierarchical
relationship. The undirectional curved line without an
arrowhead represents an interactive relationship. The
interactive relationship with a streotype of combination
represents a combinatorial relathionship 1 . The interactive
relathionship with a streotype of sequence and with open
arrowhead represents a sequential relationship.

The bottom viewpoint represents parameters of
combinatorial tests or test conditions for test detail design.
Test detail design is a phase to extract test cases by test
design technique such as simple enumeration, equivalence
partitioning, control flow testing and state transition testing.
Fig. 5 shows an example of the bottom viewpoint.

Figure 5. Example of viewpoint diagram and test cases

Fig.6 is an example of a viewpoint diagram and test cases.

Each viewpoint indicates parameters and has several values.
In this example the viewpoint “Kinds of OS” has two values
and the viewpoint “Kinds of Web browser” has three values.
One set of combinatorial test cases consists of 6 test cases.

Though the viewpoint diagram looks similar to the
classification tree[4], there is a difference between them. The
viewpoint diagram tends to be simple in combinatorial test
design because it doesn’t need to indicate any values and
detail combinations. The classification tree, however, tends
to be complicated because it needs to indicate each value and
each combination in detail. The viewpoint diagram is more
suitable than the classification tree for drawing test
architecture for combinatorial testing of large-scale and
complicated software.

Figure 6. Example of viewpoint diagram and test cases

1 In this paper all interactive relationships in all diagrams except Fig.4
mean combinatorial relationships.

IV. TEST ARCHITECTURAL DESIGN PATTERNS
FOR COMBINATORIAL TEST DESIGN

There are various patterns in every engineering domain
such as constructional design and mechanical design. The
patterns are an abstraction of experiences and engineering
sense from part of previous successful design. In the
software engineering domain there are various patterns such
as GoF 23 patterns[5] and analysis patterns[6].

It is impossible to collect patterns exhaustively in any
domain where patterns are usually used because they are
inductively abstracted from experiences of engineers.
Patterns can be structured when several or many patterns are
accumulated. If patterns are well-structured enough and a
new pattern can be deductively constructed, the well-
structured set of patterns will not be called “patterns”, but
“theories”. In the early stages of research such as test
architecture design, it is hence important to show examples
of patterns though it seems to be ad hoc.

In this paper we show examples of test architecture
design patterns below focusing on combinatorial test design
using NGT. These patterns are neither exhaustive nor
structured because they are inductively abstracted from
experiences of selecting parameters and because research of
CT architecture design is just in its early stages. Further
research on accumulating and structuring patterns is
expected.

1) Interaction-Viewpoint Conversion Pattern

Some kinds of combinations have reasons for being
tested combinatorially. For example, the order of installation
of software such as service packs of the OS and versions of
web browsers can cause a bug which arises from overwriting
a shared DLL. When a test designer aims at this bug, he or
she cannot only design combinatorial test between service
packs of the OS and versions of web browsers but also can
design non-combinatorial tests (i.e. tests for just a single
parameter) for versions of the shared DLL. His or her
selection depends on context such as the clarity of the test
objective and the possibility of intentional changes of
different versions of a shared DLL. In test architecture
design he or she has to be able to convert an interaction into
a viewpoint.

Interaction-Viewpoint Conversion is a test architecture
design pattern to change an interaction into a viewpoint and
to change a viewpoint into an interaction. Fig.7. shows
Interaction-Viewpoint Conversion Pattern.

Figure 7. Interaction-Viewpoint Conversion Pattern

For the example of configuration testing for service

packs of the OS and several versions of a web browser in

Fig.8, Va shows service packs of the OS, Vb shows versions
of the web browser and Vc is versions of a shared DLL
between the OS and the web browser. Va has 3 values, Vb
has 5 values and Vc has 2 values. In this example, some
versions of the web browser overwrite the shared DLL of a
specific version and the remaining versions overwrite the
shared DLL of a different version. A test designer can
design 15 test cases for combination of Va (3 values) and
Vb (5 values) without this pattern. If he or she aims only at
bugs caused by versions of the shared DLL, he or she can
apply this pattern and design 10 test cases for non-
combination of Va (3 values), Vb (5 values) and Vc (2
values) .

Figure 8. Example of Interaction-Viewpoint Conversion Pattern

2) Interaction Cluster Partitioning Pattern
There may be a group of complicated viewpoints with a

lot of combinations. Each combination doesn’t have,
however, the same significance. While one type of
combination forms some clusters, the other type of
combination connects clusters. A cluster can suggest a
concern semantically. In test architecture design a test
designer should separate concerns and refine a test viewpoint
model to increase cohesion and decrease coupling of the
model.

Interaction Cluster Partitioning is a test architecture
design pattern to divide a complicated clump of
combinations into two tight combined clusters and one loose
combination between the clusters. Fig.9 shows the
Interaction Cluster Partitioning Pattern.

Figure 9. Interaction Cluster Partitioning Pattern

For the example of configuration testing for a client and

a server in Fig. 10, Vd is versions of a client OS (3 values),
Ve is versions of an e-mail client (4 values) and Vf is
versions of a web browser (2 values). Vg is versions of a
server OS (2 values), Vh is versions of an e-mail server (3

values) and Vi is versions of an anti-spam server (4 values).
In this example, some versions of the e-mail server affect
only behaviour of the e-mail client by a bug of SMTP over
SSL. A test designer can design 576 test cases for the full
combination of Vd, Ve, Vf, Vg, Vh and Vi without this
pattern. If he or she aims only at bugs caused by e-mail
protocols between the e-mail client and the e-mail server, he
or she can apply this patterns and design 64 test cases for
two sets of combinations of clusters (Vd-Ve-Vf and Vg-Vh-
Vi) and one combination between Ve and Vh. 576 cases and
64 cases can be reduced if CT detail techniques are applied.

Figure 10. Example of Interaction Cluster Partitioning Pattern

3) Interaction Demotion Pattern

A test designer may connect semantically different
combinations from one abstract viewpoint to other different
viewpoints when he or she makes a model with a top-down
approach for large-scale and complicated systems. In other
words the one viewpoint includes different concerns for the
different combinations. He or she should separate the
viewpoint into different child viewpoints according to the
semantics of the combinations so that he or she can reduce
the number of values for each combination.

Interaction Demotion is a test architecture design pattern
to divide one viewpoint combined with different viewpoints
into its different child viewpoint. Fig.11 shows the
Interaction Demotion Pattern.

Figure 11. Interaction Demotion Pattern

For the example of testing for a photocopier in Fig. 12,

Vj is paper trays (3 values), Vk is paper (6 values) and Vl is
duplex mode, that is, one-sided or two-sided (2 values). In
this example, paper has two types of values such as size and
material. Vm is size (4 values) and Vn is material (2 values).
Assuming sizes can affect paper trays and materials can
affect duplex mode (via a paper feeding mechanism), while
the effect of sizes on duplex mode and the effect of materials

on paper trays can be ignored. If a test designer doesn’t agree
with the assumption, he or she can design 30 test cases for
two combinations of Vj-Vk and Vk-Vl without these
patterns. If he or she agrees with the assumption, he or she
can divide the viewpoint Vk into Vm and Vn, apply this
pattern and design 16 test cases for two combinations Vj-Vm
and Vn-Vl.

Figure 12. Example of Interaction Demotion Pattern

4) Interaction Necessity Analysis pattern

Test designers actually tend to increase combinations far
more than they are essentially necessary because test
designers have a tendency to overestimate risks of omitting
combinations far more than they should.

Interaction Necessity Analysis is a test architecture
design pattern to review a necessity of interaction and delete
the interaction if unnecessary. Fig.13 shows the Interaction
Necessity Analysis Pattern.

 Figure 13. Interaction Necessity Analysis Pattern

V. CONCLUSION

Software test has recently been a large-scale and
complicated artifact as is the software itself. It is necessary to
reduce huge combinatorial test cases. This paper focuses on
reduction of test parameters and combinations in test
architectural design. First we mentioned test architecture
design phase in TDLC: Test Development Life Cycle.
Second we introduced NGT: Notation for Generic Testing,
which is a set of concepts or notation for the design of
software test architecture. This paper showed four examples
of test architecture design patterns: Interaction-Viewpoint
Conversion Pattern, Interaction Cluster Partitioning Pattern,
Interaction Demotion Pattern and Interaction Necessity
Analysis.

REFERENCES
[1] OMG, “UML Testing Profile (UTP) Version 1.1 RTF - Beta 1,”

http://www.omg.org/spec/UTP/1.1/PDF/, June 2011.

[2] Y. Nishi: “Viewpoint based Test Architecture Design,” Workshop on
Metrics and Standards for Software Testing (MaSST2013),
Gaithersburg, Maryland, USA, Jun 2012, CD-ROM(3rd presentation).

[3] IEEE, “IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems,” IEEE Std 1471-2000, September 2000.

[4] M. Grochtmann, K. Grimm, “Classification trees for partition
testing,” Software Testing, Verification and Reliability, Vol. 3, Issue
2, pp. 63–82, June 1993.

[5] E. Gamma, R. Helm, R. Johnson and J.Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software,” Addison-Wesley,
1994.

[6] M. Fowler: “Analysis Patterns: Reusable Object Models,” Addison-
Wesley, 1997.

