
Viewpoint-based Test Architecture Design

Yasuharu NISHI
Department of Informatics, Graduate School of Informatics and Engineering

The University of Electro-Communications, Tokyo
Tokyo, Japan

Yasuharu.Nishi@uec.ac.jp

Abstract— Software test recently becomes large-scale and
complicated artifact as software itself. Research and practices
has to be boosted such as test architecture. In this paper first we
mention TDLC: Test Development Life Cycle, which includes test
requirement design phase and test architecture design phase
instead of test planning from engineering view. Second we discuss
concepts of test architecture and propose NGT: Notation for
Generic Testing, which is a set of concepts or notation for design
of software test architecture. Viewpoint is discussed as a key
concept of test architecture representing a group of test cases and
test objective. And this paper gives an example of test
architecture model. Finally this paper shows possibility that
viewpoint diagram will be a platform of test architecture design
technology such as test design patterns, test architecture style,
variability analysis of product line engineering and so on.

Keywords-component; test architecture; Test Development Life
Cycle; test requirement analysis; test suite; viewpoint; UTP; NGT;

I. INTRODUCTION

Software test recently becomes large-scale and complicated
artifact as software itself. There can be a test project with over
one million test cases or with over ten test levels. Technology
of large-scale and complicated software test has just begun
advance and has to be boosted.

"Software architecture" technology arose in 1990s for
development of large-scale and complicated software based on
abstraction, separation of concerns, modeling, patterns and so
on. "Software test architecture" technology has just arising in
our age, and we have to boost research and practices on
software test architecture technology more and more. This
paper shows perspective of research and practices on software
test architecture.

Architecture of software system has two kinds of scope:
system architecture and software architecture. System
architecture is for software, platform, peripherals, environment,
network et al. Software architecture is only for software inside,
which mainly consists of modules (groups of statements) such
as classes.

Test architecture also has two kinds of scope: test system
architecture and test suite architecture. Test system architecture
is for test system, system/software to be tested (SUT), platform
where SUT is executed, generator of test cases et al. Test suite
architecture is for test suite inside, which mainly consists of
groups of test cases such as test levels and test types.

Fig.1 A Test system architecture example on UTP[1]

Fig.2 A Test suite architecture example on NGT

II. TEST SYSTEM ARCHITECTURE AND
TEST SUITE ARCHITECTURE

There are several research and practices on test system
architecture. UML Test Profile[1] is standardized as a notation
based on UML for test system architecture. But research and
practices of test suite architecture stays just experiences and
heuristics. In this paper hereinafter the word "test architecture"
means test suite architecture. Fig.1 shows an example of test
system architecture according to UTP, UML Test Profile. Fig.2
shows an example of test suite architecture according to NGT,
Notation of Generic Testing discussed in chapter V.

III. TEST PLANNING AND TEST ARCHITECTURE DESIGN

Test process is recognized roughly by tradition as below:
Test planning, test design and test execution. Traditional test
design means a phase to derive test cases by test techniques
such as control path testing. Traditional test planning means a
phase which includes planning test project and drawing big
picture of test cases, that is, which includes both tasks of
management side and engineering side.

In software development project planning phase includes
only tasks of management side and software architecture
design phase fills a role of drawing big picture of software, that
is, just engineering side. A lot of companies have both
positions of project manager and software architect. In software
testing tasks of management side and engineering side are
traditionally mixed as test planning, test strategy or test
approach, because software testing is tight and careful task for
budget and effort. Fig.3 shows Heuristic Test Strategy Model
by James Bach [2]. Mixture and severe constraint lead test
researchers and practitioners to one-sided view. A lot of
companies have a position of "test manager" but only a few
companies have a position of "test architect".

Fig.3 Heuristic Test Strategy Model [2]

To boost research and practices on software test
architecture technology, we have to distinguish management
side and engineering side. It is necessary to re-define test
process only from engineering side named TDLC, Test
Development Life Cycle. Fig. 4 shows TDLC, which consists
of four phases: test requirement analysis, test architecture
design, test detail design and test implementation. TDLC is just
to develop test cases or test script. Whole test process needs
test execution phase, test result recording phase and several test
management tasks.

Test
architecture

design

Test
detail
design

Test
requirement

analysis

Test
imple-

mentation

…

…

Test design
[engineering side]

Test planning
[management side]

Traditional mixed-side test process

TDLC (Test Development Life Cycle)

Fig.4 TDLC (Test Development Life Cycle)

IV. CONCEPTS FOR TEST ARCHITECTURE

As there is still no agreement on the precise definition of
the term "software architecture", the precise definition of test
architecture is impossible for the present. For example IEEE
std. 1471-2000[3] defines "architecture" as "The fundamental
organization of a system embodied in its components, their
relationships to each other, and to the environment, and the
principles guiding its design and evolution". To follow IEEE's
definition, we have to clarify what are components and
relationships as well as statements in software testing.

It is natural for statements to correspond to test cases or test
scripts. This correspondence leads components to be group of
test cases such as test types or test levels, which are essentially
hierarchical. It should be noted that classes, which are
components in OO paradigm, has two angles. The one is group
of statements (and data) as an extension of structured
programming as a way of OOP. The other one is constituent of
the world as a way of OOA. Test types or test levels may be
from the former angle. We should deeply discuss which angle
is suitable for test architecture just following test requirement
analysis and how seamless test requirement analysis model and
test architecture model should be.

Relationships are more difficult than statements and
components. There may be at least two types of relationships.
The one is for combinatorial testing. If a load test type should
be tested combinatorially with a configuration test type, they
have some relationship. The other one is sequential
dependency. As an integration test level should be tested after a
unit test level, they have some relationship. We should find
various types of relationships.

In addition we have to clarify what is necessary for
principles guiding test detail design and implementation. Some
principles for software design can be applicable such as
abstraction, separation of concerns, modularity. Quality
characteristics of test suite can indicate and assist good test
design such as maintainability of test suite or test cases.
Notation or formulation can make engineers easy to store
reusable test assets, test design patterns and test architecture
styles. Product line engineering of test suite can arise
separately from test design just for software product line.

V. NGT: NOTATION FOR TEST ARCHITECTURE DESIGN

For design of test architecture, notation or a set of concepts
is necessary. It should consist of concepts of a group of test
cases, hierarchical structure, relationship for combinatorial
testing, relationship for sequential dependency. It would be
better if it can harmonize the principles, abstraction, separation
of concerns, modularity, quality characteristics.

We propose notation or a set of concepts named NGT,
Notation for Generic Testing. NGT consists of three concepts
which are viewpoint, hierarchical relationship and interactive
relationship. Viewpoint is a concept of a group of test cases.
Hierarchical relationship is used for hierarchical structure of
viewpoints. Hierarchical relationship means abstraction (is-a),
composition (has-a), cause-effect and object-attribute.
Interactive relationship means necessity for combinatorial
testing.

Lowest boxes (most detailed viewpoints) usually mean
coverage items of groups of test cases or test detail design. Test
detail design is a phase to extract test cases by test design
technique such as equivalence partitioning, control flow testing
and state transition testing. When control flow testing is used,
“control flow” is most detailed viewpoints.

In Fig.2 viewpoint diagram of NGT, boxes represent
viewpoints. Directional lines represent hierarchical
relationships and unidirectional curved lines represent
interactive relationships. This diagram is named as “Viewpoint
diagram”.

Though viewpoint diagram looks similar to classification
tree[4], viewpoint diagram is more suitable for drawing big
picture of software testing than classification tree. Viewpoint
concept doesn’t include only equivalence partition but
coverage item. Viewpoint diagram can represent combinatorial
relationships in the same diagram as viewpoints at higher
abstraction level, i.e. coverage item level, although
classification tree can do so in different diagrams at lower
abstraction level, i.e. parameter level.

Viewpoint diagram has also two angles. Like an angle of
OOP, which is lower abstraction level, viewpoint means a
group of test cases. Like an angle of OOA, which is higher
abstraction level, viewpoint means test objective. In test
requirement analysis phase test objectives are listed and refined.
Fig.5 shows an example of viewpoint diagram for testing of
some mission critical system in test requirement analysis phase.
Viewpoints are listed enough but combinatorial relationships
are too many and too complicated to test. In test architecture
design phase the viewpoints diagram should be well-organized
using modeling technique.

Fig.5 An example of viewpoint diagram
in test requirement analysis phase

Fig.6 organized viewpoint diagram
in test architecture design phase

Fig.6 shows an organized viewpoint diagram in test
architecture design phase. Fig 5 includes less viewpoints and
more interaction, which means combinatorial relationship.
Fig.6 includes more viewpoints and less interaction. Fig.6 is
more complicated visually and conducts far more test cases
because test cases conducted by interaction are proportional to
multiplication among test cases conducted by each viewpoint.
Fig 5 is larger visually but conducts less test cases because it
has less interaction.

In test architecture design phase, we use some modeling
techniques such as unification and re-define of viewpoint,
unification and abstraction of interaction, clustering viewpoints,
separation of key interaction and so on.

Each modeling technique is usually applied in test planning
phase with experiences and heuristics. Viewpoint diagram can
makes it easier to develop, accumulate and reuse experiences
and heuristics as modeling techniques or test design patterns. In
other words, viewpoint diagram will be a platform of test
architecture design technology such as test design patterns, test
architecture style, variability analysis of product line
engineering and so on.

NGT can complement UML Test Profile because research
and application of UTP mainly focus on test system
architecture such as automation at present and NGT focuses on
test suite architecture. NGT should harmonize UTP in future
research.

VI. CONCLUSION

Software test recently becomes large-scale and complicated
artifact as software itself. Research and practices has to be
boosted such as test architecture. In this paper first we
mentioned TDLC: Test Development Life Cycle, which
includes test requirement design phase and test architecture
design phase instead of test planning from engineering view.
Second we discussed concepts of test architecture and propose
NGT: Notation for Generic Testing, which is a set of concepts
or notation for design of software test architecture. Viewpoint
is discussed as a key concept of test architecture representing a
group of test cases and test objective. And this paper gave an
example of test architecture model. Finally this paper showed
possibility that viewpoint diagram will be a platform of test
architecture design technology such as test design patterns, test
architecture style, variability analysis of product line
engineering and so on.

REFERENCES
[1] OMG, “UML Testing Profile (UTP) Version 1.1 RTF - Beta 1,”

http://www.omg.org/spec/UTP/1.1/PDF/, June 2011.

[2] J. Bach, “Heuristic Test Strategy Model,” http://www.satisfice.com
/tools/satisfice-tsm-4p.pdf, March 2006.

[3] IEEE, “IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems,” IEEE Std 1471-2000, September 2000.

[4] M. Grochtmann, K. Grimm, “Classification trees for partition testing,”
Software Testing, Verification and Reliability, Vol. 3, Issue 2, pp. 63–82,
June 1993.

