Combinatorial Test Architecture Design Using Viewpoint diagram

IWCT 2013 (International workshop on Combinatorial Testing) in conjunction with ICST 2013 in Luxembourg

NISHI, Yasuharu The university of Electro-Communications, Tokyo

• In this presentation

we'd like to share our experience of design CT

- It's just abstract represents such as design patterns because NDA obstruct some detail explanations :-(
- This presentation is mainly on parameter-level "design patterns" of CT
 - For a large-scale and complicated software
 we also introduce our methodology which consists of:
 - » notation (NGT)
 - » process model (VSTeP)
 - » techniques (design patterns, quality characteristics etc.)

Term: Parameters, Values and Test cases

Parameter	OS	Web browser
Value	Windows Vista	Internet Explorer
	Windows 7	Firefox
		Chrome

Our idea: modeling only parameters and combinations

4

Complicated and large numbers of combination

- Test engineers tend to design CT cases without deep consideration, sometimes with fear
 - They're often troubled with combinatorial bugs and have to design CT
 - They have useful tools e.g. PICT, AETG, Allpairs
 - They consider "Is this parameter necessary for CT?" ____
 - » Boss says "Do you take the responsibility when bugs appear on the market if you reduce CT cases?" :-(
 - They throw all sort of parameters into their CT tool without deep consideration and get huge CT cases actually » Ex) Sometimes I hear a question "how to make L256 OA?"
- Test engineers can feel relaxed with huge CT cases but will lose their sense or purpose of test design
 - Whether each parameter is necessary for CT?
 - Whether each combination is necessary to test?
 - They don't have any technique for deep consideration Software Testing

As a result... :-(

Three strategies for reduction of CT design

- Reduction of CT cases is one of important research theme
 - 1) Test cases reduction
 - » To reduce test cases with fixed parameters and fixed values by all-pairs, orthogonal arrays etc.
 - » Ex) from 256 (2^8) cases to 8 cases with an L8 orthogonal array
 - » Actively researched by researchers !
 - 2) Test values reduction
 - » To reduce values with fixed parameters by equivalence partitioning etc.
 - » Ex) from 12 months to 3 types of months, i.e. long, short and Feb.
 - 3) Test parameters and combinations reduction: our research
 - » To reduce parameters or combinations by re-consideration ;-)
 - » EX) Decide not to test combinatorially between OSs and Web browsers

Technique for deep consideration of CT design

- Test engineers should have technologies to deeply consider necessities of parameters and combinations for CT
 - Model is a technology for deep consideration in software engineering
 - We proposed NGT, Notation for Generic Testing, for test modeling
- "Viewpoint diagram" can be a technology for modeling of parameters and combinations for CT
 - Viewpoint diagram is one of diagrams of NGT
 - Viewpoint diagram fundamentally consists of boxes and lines
 - Boxes represent parameters, called "viewpoints"
 - Lines represent combinations, called "relationships"
 - Viewpoint diagram hides values and can make test engineers concentrate their attention to parameters and combinations

Viewpoint diagram and test cases

ID	Test cases	OS	Web browser
1	Vista - IE	Windows Vista	Internet Explorer
2	Vista - Firefox	Windows Vista	Firefox
3	Vista - Chrome	Windows Vista	Chrome
4	7 - IE	Windows 7	Internet Explorer
5	7 -Firefox	Windows 7	Firefox
6	7 - Chrome	Windows 7	Chrome

Hierarchical relationships of viewpoints

- For convenience of modeling, viewpoints can be in hierarchy
 - Arrows with a closed head represent
 "hierarchical relationships"
 Environment
 Wiew

Types of Hierarchical relationship

- Hierarchical relationships can bear several meanings
 - is-a relationship: inheritance
 - has-a relationship: possession
 - There may be other hierarchical relationships
 - Relationships can represent their meanings with <<stereotype>>

Interactive relationships of viewpoints

- Viewpoints can relate each other with interactive relationships
 - Non-hierarchical relationships are necessary: Interactive relationships
 - They can also bear several meanings: combination, sequential etc.
 - Lines without arrowhead represent "combinatorial relationships"
 - Arrows with an open head represent "sequential relationships"
 - Relationships can represent their meanings with <<stereotype>>
 - In this presentation interactive relationships without stereotypes represent combinatorial relationship

Notation of viewpoint diagram in NGT

Software Testing

• The word "viewpoint" is independent of roles

- CT consists of two layers of design:
 - Value/case-level design (Test detail design)
 - » To extract values with fixed parameters by equivalence partitioning etc.
 - » To design test cases with fixed parameters and fixed values by all-pairs, orthogonal arrays etc.
 - » Using CT design technique/method
 - Parameter/combination-level design (Test architecture design)
 - » To find out appropriate parameters and combinations
 - » To consider which parameters and combinations are suitable for the current test project
 - » Making CT design modeling
- They are similar to detail design and architecture design in software development
 - They are both important !

CT engineering process

- CT should consist of engineering process similar to software development
 - CT-RA and CT-AD is traditionally called "test planning"

- We proposed VSTeP, a generic process model for Viewpoint-based test architecture design not limited to CT
 - Especially for a large-scale and complicated software

Viewpoint diagram is simple enough

- Viewpoint diagram is simple enough to make a test architecture design model
 - More simple than classification tree

Viewpoint diagram

Techniques for test architecture design

- Design patterns for test architecture design
 - Part of model which can simplify complicated design
- Styles of test architecture design
 - Typical set of top viewpoints
 - » User, spec, design and bug
 - » Functionality, reliability, usability and efficiency» etc.
- Quality characteristics of test suite
 - Maintainability of test cases
 - Automate-ability of test cases
 - etc.
- Product line engineering of test suite
 - Well-organized scheme of re-use of test cases

Overview of our methodology

21

CT Design patterns on viewpoint diagram

- This research shows four CT design patterns on viewpoint diagram
 - Interaction-Viewpoint Conversion Pattern
 - Interaction Cluster Partitioning Pattern
 - Interaction Demotion Pattern
 - Interaction Necessity Analysis pattern

Interaction-Viewpoint Conversion Pattern

- you can refine the viewpoint model and reduce test cases
 - if you can specify the source of combinatorial bugs is an overwritten shared DLL and accept risks of bugs from other sources

Interaction Cluster Partitioning Pattern

- you can refine the viewpoint model and reduce test cases
 - if you can specify the source of combinatorial bugs is
 e-mail protocols and accept risks of bugs from other sources

Interaction Demotion Pattern

- you can refine the viewpoint model and reduce test cases
 - if you can separate effects of sizes on trays and materials to duplex modes and accept risks of bugs from separation

Interaction Necessity Analysis pattern

- you can refine the viewpoint model and reduce test cases
 - if you're certain that behavior of web browsers doesn't depend on kinds of HDD and accept risks of bugs from dependency of them

We share four CT design patterns

• You can find more patterns in your CT design ! :-)

Interaction-Viewpoint Conversion Pattern

Software Testing

Interaction Cluster Partitioning Pattern

Example of test architecture refinement

- Several patterns can refine test architecture
 - Both are the same meaning model of semi mission critical software
 - I refined the left model to the right model using several patterns
 - I'm sorry for insufficient explanation due to NDA :-(

- Parameter-level / test architecture design for CT is important
 - especially for a large-scale and complicated software
- "Viewpoint diagram" is a technology for parameter-level / test architecture design for CT
 - We show NGT, notation for viewpoint diagram, and VSTeP, a process model focusing on test architecture design
- We share four design patterns on test architecture level for CT to reduce CT cases
- You can research CT technique on test architecture level
 - more design patterns for CT
 - high-maintainabliity CT parameter-level design
 - etc.

Thank you for your kind attention

NISHI, Yasuharu http://blues.se.uec.ac.jp/ Yasuharu.Nishi@uec.ac.jp